Elsayed Saber Elsayed Ibrahiem Elsayed, M. Sc.


Elsayed Saber Elsayed Ibrahiem Elsayed, M. Sc.
Telefon
Adresse
Appelstraße 9a
30167 Hannover
30167 Hannover
Gebäude
Raum


Elsayed Saber Elsayed Ibrahiem Elsayed, M. Sc.
Telefon
Forschungsprojekt
-
Physics-augmented machine learning for computational fracture mechanicsLeitung: Prof. Dr.-Ing. Fadi AldakheelTeam:Jahr: 2023
-
(2024): An enhanced deep learning approach for vascular wall fracture analysis, Archive of Applied Mechanics, Pages 1-14 Weitere Informationen
DOI: https://doi.org/10.1007/s00419-024-02589-3 -
(2023): FE‐NN: Efficient‐scale transition for heterogeneous microstructures using neural networks, PAMM, e202300011 Weitere Informationen
-
(2023): Efficient multiscale modeling of heterogeneous materials using deep neural networks, Springer Berlin Heidelberg, Computational Mechanics, Vol. 72, 155-171 Weitere Informationen
-
(2023): Machine learning aided multiscale magnetostatics, Sciencedirect, Mechanics of Materials, Vol. 184, 104726 Weitere Informationen