Dr. Zhibao Zheng

Photo of Zheng Zhibao Photo of Zheng Zhibao
Dr. Zhibao Zheng
Address
Appelstraße 11/11a
30167 Hannover
Building
Room
Photo of Zheng Zhibao Photo of Zheng Zhibao
Dr. Zhibao Zheng
Address
Appelstraße 11/11a
30167 Hannover
Building
Room
  • Research Interests
    • Stochastic finite element method
    • Random field simulation
    • Reliability analysis
    • Fractional calculus
  • Academic experience and education
    November 2021 – Present Postdoctoral research at IBNM, Leibniz University Hannover, Germany
    January 2020 – October 2021 Postdoctoral research at School of Civil Engineering, Harbin Institute of Technology, China
    August 2015 – December 2019 PhD candidate in Engineering Mechanics at Harbin Institute of Technology, China
    August 2011 – July 2015 Bachelor in Civil Engineering at Harbin Institute of Technology, China
  • Honors and awards
    Alexander von Humboldt Fellow, 2021
    Outstanding Doctoral Dissertation Award, 2021

    Title of dissertation: A new method for solving stochastic finite element equations and its applications, Harbin Institute of Technology

    Outstanding Undergraduate Dissertation Award, 2015

    Title of dissertation: A new fractional wavelet transform, Harbin Institute of Technology

     

  • Journal publications
    1. Zheng, Z.B.*, Dai H.Z. (2021): Structural stochastic responses determination via a new stochastic finite element method. In: Computer Methods in Applied Mechanics and Engineering, 324: 113824.
       
    2. Zheng, Z.B.*, Dai H.Z., Wang Y.Y., Wang W. (2021): A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes. In: Mechanical Systems and Signal Processing, 151: 107420.
       
    3. Dai H.Z.*, Zheng, Z.B., Ma H.H. (2019): An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansion. In: Mechanical Systems and Signal Processing, 115: 1-13.
       
    4. Zheng, Z.B., Zhao W., Dai H.Z.* (2019): A new definition of fractional derivative. In: International Journal of Non-Linear Mechanics, 108: 1-6.
       
    5. Zheng, Z.B., Dai H.Z.* (2018): A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis. In: Nonlinear Dynamics, 91: 1075-1084.
       
    6. Zheng, Z.B., Dai H.Z.* (2017): Simulation of multi-dimensional random fields by Karhunen–Loève expansion. In: Computer Methods in Applied Mechanics and Engineering, 324: 221-247.
       
    7. Dai H.Z.*, Zheng, Z.B., Wang W. (2017): Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen-Loève expansion. In: Communications in Nonlinear Science and Numerical Simulation, 49: 145-158.
       
    8. Dai H.Z.*, Zheng, Z.B., Wang W. (2017): A new fractional wavelet transform. In: Communications in Nonlinear Science and Numerical Simulation, 44: 19-36.
       
    9. Dai H.Z.*, Zheng, Z.B., Wang W. (2017): On generalized fractional vibration equation. In: Chaos, Solitons & Fractals, 95: 48-51.

Article

  • Zhibao Zheng, David Néron, Udo Nackenhorst (2024): A stochastic LATIN method for stochastic and parameterized elastoplastic analysisComputer Methods in Applied Mechanics and Engineering, Band 419, Seiten 116613 More info
    DOI: https://doi.org/10.1016/j.cma.2023.116613
  • Zhibao Zheng, Hongzhe Dai, Michael Beer (2023): Efficient structural reliability analysis via a weak-intrusive stochastic finite element methodProbabilistic Engineering Mechanics, Band 71, Seiten 103414 More info
    DOI: https://doi.org/10.1016/j.probengmech.2023.103414
  • Zhibao Zheng, Marcos Valdebenito, Michael Beer, Udo Nackenhorst (2023): A stochastic finite element scheme for solving partial differential equations defined on random domainsComputer Methods in Applied Mechanics and Engineering, Band 405, Seiten 115860 More info
    DOI: https://doi.org/10.1016/j.cma.2022.115860
  • Zhibao Zheng, Udo Nackenhorst (2023): A nonlinear stochastic finite element method for solving elastoplastic problems with uncertaintiesInternational Journal for Numerical Methods in Engineering, Band 124, Ausgabe 16, Seiten 3411-3435 More info
    DOI: https://doi.org/10.1002/nme.7253
  • Zhibao Zheng, Udo Nackenhorst (2023): Semi-reduced order stochastic finite element methods for solving contact problems with uncertaintiesComputational Mechanics, Band 72, Seiten 991–1008 More info
    DOI: https://doi.org/10.1007/s00466-023-02323-w
  • Zhibao Zheng, Marcos Valdebenito, Michael Beer, Udo Nackenhorst (2023): Simulation of random fields on random domainsProbabilistic Engineering Mechanics, Band 73, Seiten 103455 More info
    DOI: https://doi.org/10.1016/j.probengmech.2023.103455
  • Zhibao Zheng, Udo Nackenhorst (2023): Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticityComputational Mechanics, Seiten 1-18 More info
    DOI: https://doi.org/10.48550/arXiv.2305.04253
  • Zhibao Zheng, Michael Beer, Udo Nackenhorst (2023): An iterative multi-fidelity scheme for simulating multi-dimensional non-Gaussian random fieldsMechanical Systems and Signal Processing, Band 200, Seiten 110643 More info
    DOI: https://doi.org/10.1016/j.ymssp.2023.110643
  • Zhibao Zheng, Michael Beer, Udo Nackenhorst (2022): An efficient reduced‐order method for stochastic eigenvalue analysisInternational Journal for Numerical Methods in Engineering, Band 123, Ausgabe 23, Seiten 5884-5906 More info
    DOI: https://doi.org/10.1002/nme.7092
  • Zhibao Zheng, Michael Beer, Hongzhe Dai, Udo Nackenhorst (2022): A weak-intrusive stochastic finite element method for stochastic structural dynamics analysisComputer Methods in Applied Mechanics and Engineering, Band 399, Seiten 115360 More info
    DOI: https://doi.org/10.1016/j.cma.2022.115360
  • Zhibao Zheng, Hongzhe Dai, Yuyin Wang, Wei Wang (2021): A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processesMechanical Systems and Signal Processing, Band 151, Seiten 107420 More info
    DOI: https://doi.org/10.1016/j.ymssp.2020.107420
  • Zhibao Zheng, Hongzhe Dai (2021): Structural stochastic responses determination via a sample-based stochastic finite element methodComputer Methods in Applied Mechanics and Engineering, Band 381, Seiten 113824 More info
    DOI: https://doi.org/10.1016/j.cma.2021.113824
  • Zhibao Zheng, Wei Zhao, Hongzhe Dai (2019): A new definition of fractional derivativeInternational Journal of Non-Linear Mechanics, Band 108, Seiten 1-6 More info
    DOI: https://doi.org/10.1016/j.ijnonlinmec.2018.10.001
  • Hongzhe Dai, Zhibao Zheng, Huihuan Ma (2019): An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansionMechanical Systems and Signal Processing, Band 115, Seiten 1-13 More info
    DOI: https://doi.org/10.1016/j.ymssp.2018.05.026
  • Zhibao Zheng, Hongzhe Dai (2018): A new fractional equivalent linearization method for nonlinear stochastic dynamic analysisNonlinear Dynamics, Band 91, Seiten 1075-1084 More info
    DOI: https://doi.org/10.1007/s11071-017-3929-8
  • Hongzhe Dai, Zhibao Zheng, Wei Wang (2017): On generalized fractional vibration equationChaos, Solitons & Fractals, Band 95, Seiten 48-51 More info
    DOI: https://doi.org/10.1016/j.chaos.2016.12.006
  • Hongzhe Dai, Zhibao Zheng, Wei Wang (2017): A new fractional wavelet transformCommunications in Nonlinear Science and Numerical Simulation, Band 44, Seiten 19-36 More info
    DOI: https://doi.org/10.1016/j.cnsns.2016.06.034
  • Hongzhe Dai, Zhibao Zheng, Wei Wang (2017): Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen–Loeve expansionCommunications in Nonlinear Science and Numerical Simulation, Band 49, Seiten 145-158 More info
    DOI: https://doi.org/10.1016/j.cnsns.2017.01.033
  • Zhibao Zheng, Hongzhe Dai (2017): Simulation of multi-dimensional random fields by Karhunen–Loève expansionComputer Methods in Applied Mechanics and Engineering, Band 324, Seiten 221-247 More info
    DOI: https://doi.org/10.1016/j.cma.2017.05.022